

EloPin® Press Fit Connectors

Solderless PCB connections Connection of micro- and macro-electronics One stop shop (stamping, overmolding, assembly) Automotive and other industries

Technical information

Press fit is an innovative solderless technology for connecting electrical circuits. It increases the reliability of connections, enhances vibration resistance, reduces costs and boosts productivity. CGR co-engineers solutions based on the patented EloPin® technology, from feasibility studies and prototyping through to serial production of connectors, including stamping, overmolding and automated assembly.

Standard EloPin® sizes					
Designation ¹	04-06	06-10	08-145	08-16	12-20
Pin strength	0,4 mm	0,6 mm	0,8 mm	0,8 mm	1,2 mm
PTH Ø	0,6 mm	1,0 mm	1,45 mm	1,6 mm	2,0 mm
PCB board strength	≥ 1,0 mm	≥ 1,5 (1,0) mm	≥ 1,5 mm	≥ 1,5 mm	≥ 1,5 mm
Press-in force max.	100 N	100 N	160 N	160 N	200 N
Press-in force typical	20-60 N	65 N	115 N	85 N	160 N
Push-out force min.	20 N	30 N	40 N	50 N	50 N
Push-out force typical	35-70 N	60 N	135 N	105 N	110 N
Volume resistance max.	1 mΩ	1 mΩ	1 mΩ	1 mΩ	1 mΩ
Volume resistance typical	0,05 mΩ	0,01 mΩ	0,01 mΩ	0,01 mΩ	0,01 mΩ
Current capacity ²	not tested	≈ 8 A	≈ 25 A	≈ 25 A	≈ 45 A

1. Several custom sizes are available upon request. Other standard sizes are currently under development.

2. Current-carrying capacity is dependent on assembly situation with the PCB build-up being the limiting factor.

